Code Rate Maximization of Cooperative Caching in Ultra-Dense Networks

¹Salwa Mostafa,¹Chi Wan Sung, ²Guangping Xu

¹Department of Electrical Engineering City University of Hong Kong Kowloon, Hong Kong

²School of Computer and Communication Engineering Tianjin University of Technology Tianjin, China

smostafa3-c@my.cityu.edu.hk

PIMRC 2019

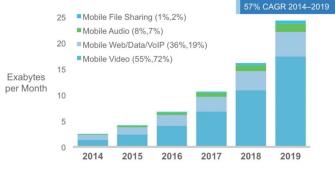
Cooperative Caching in Ultra-Dense Networks Using

- Maximum Distance Separable (MDS) Code.
- Repetition Code.

Our Objective

• Maximize the code rate while ensuring that end users within certain clusters can restore the file from the associating small base stations (SBSs) without the use of the backhaul link.

2 Problem Statement


3 Methodology

4 Simulation Model and Results

Background

- Video-on-demand is driving wireless traffic growth.
- Predicted to increase 1000 times from 4G to 5G.

Figures in parentheses refer to 2014, 2019 traffic share.

Figure: The Rise of Content: Wireless

Traditional Wireless Networks

Most Popular Files Caching

Oltra-Dense Networks

Cooperative Caching

Otilize the Cache Memory

 $\left. \begin{array}{c} \text{Cooperative Caching} \\ \text{File splitting} \end{array} \right\} \Rightarrow \text{increase content diversity.} \end{array} \\$

Prior studies

Uncoded Caching $\Rightarrow \begin{cases} Whole file is cached or not \\ Random Caching \end{cases}$

$$\mathsf{Coded}\ \mathsf{Caching} \Rightarrow \begin{cases} \mathsf{Random}\ \mathsf{Caching} \\ \mathsf{Rateless}\ \mathsf{Codes} \end{cases}$$

Our Objective

Code Rate Maximization

System Model

- Collection of L clusters is pre-determined and K_c be the minimum cluster size.
- Popular files are cached in the same manner and the problem of caching one single file of size B bits is considered.
- Packets stored in each cluster should contain enough information for decoding the original file.

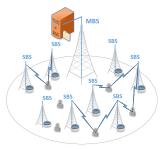


Figure: Two-tier Heterogeneous Cellular Network.

- To store the file into the caches of the SBSs, a concatenated code is used to encode the file.
- Each SBS stores $\alpha \triangleq T/M$ coded packets.
- The concatenated code rate is given by

$$R = \frac{K}{T} = \frac{K}{\alpha M}.$$
 (1)

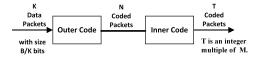


Figure: Concatenated Code.

Problem Statement

- Problem : Code Rate Maximization
- Example

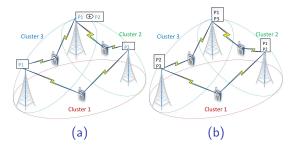


Figure: An example of coded and repetition caching (a) coded caching (b) repetition caching.

Theorem

Given any network with minimum cluster size K_c , the code rate of any feasible caching scheme is bounded above by

$$R \leq \frac{K_c}{M}.$$

Equality holds only if $\alpha = K/K_c$.

Theorem

Given any network with minimum cluster size K_c , there exists a feasible MDS-coded caching scheme with $K = K_c$ which achieves the maximum code rate

$$R^* \triangleq \frac{K_c}{M}.$$
(3)

(2)

Theorem

Given any network with minimum cluster size K_c and that a file is partitioned into K packets of equal size, the rate R of repetition caching is bounded above as follows:

$$R \le \frac{K}{\left\lceil \frac{K}{K_c} \right\rceil M}.$$
(4)

Corollary

In general, repetition caching is not rate optimal.

Corollary

Given any 1D network with minimum cluster size K_c , repetition caching can achieve optimal code rate.

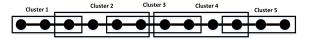


Figure: One-dimensional network.

Corollary

Given any 2D regular grid network with square clusters with minimum cluster size K_c , repetition caching can achieve optimal code rate.

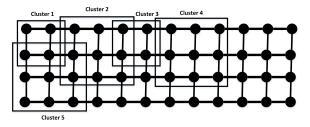


Figure: Two-dimensional regular grid network.

- Code Rate Maximization Problem $R = \frac{K}{\alpha M}$ is equivalent to minimizing α/K .
- Given K, the problem of minimizing the storage requirement α is called REPETITION(K).

Theorem

REPETITION(K) is NP-hard for $K \geq 3$.

Proof.

By identifying REPETITION(K) with K-RAINBOW-MULTICOLOR.

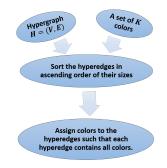
• Heuristic algorithm is proposed.

Optimization for Repetition Caching

How to cluster the SBSs ?

Figure: Distance-Based Clustering

Salwa Mostafa (City University)


Cooperative Caching

PIMRC 2019 15 / 27

-

Optimization for Repetition Caching

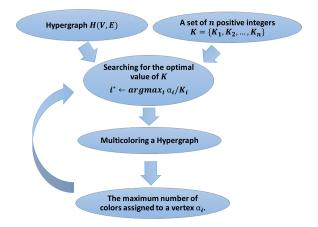
How to assign the subfiles to the SBSs ?

Figure: Multicoloring a hypergraph

Salwa Mostafa (City University)

Cooperative Caching

PIMRC 2019 16 / 27


-

- 4 ∃ →

Image: Image:

Optimization for Repetition Caching

How many segments K the file should be divided ?

Figure: File Splitting

Salwa Mostafa (City University)

Cooperative Caching

PIMRC 2019 17 / 27

- A single macro cell with a large number of SBSs randomly distributed according to homogeneous Poisson Point Process.
- Investigate the effect of the clustering parameters K_c and D_c on the code rate.
- Examine the benefits of MDS-Coded caching in terms of storage efficiency.

Coding Gain =
$$\frac{R_{MDS} - R_{Repetition}}{R_{MDS}} \times 100\%.$$
 (5)

• Fix the distance between the clusters centers and observe the effect of cluster size.

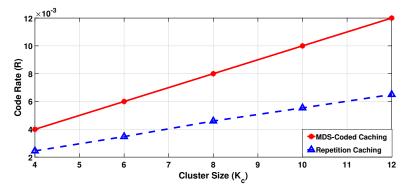


Figure: MDS-Coded Caching verse Repetition Caching with fixed $D_c = 10$ m.

• Fix the distance between the clusters centers and observe the effect of the amount of overlapping by changing K_c .

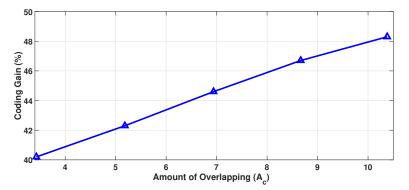


Figure: Coding Gain verses Amount of Overlapping A_c with fixed $D_c = 10$ and variable K_c

• Fix the cluster size and observe the effect of the distance between cluster centers.

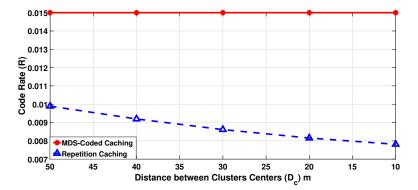


Figure: MDS-Coded Caching verse Repetition Caching with fixed $K_c = 15$.

• Fix the cluster size and observe the effect of the amount of overlapping by changing D_c .

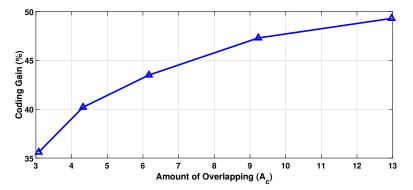


Figure: Coding Gain verse Amount of Overlapping A_c with fixed $K_c = 15$ and variable D_c

• Fix the Amount of Overlapping.

\mathbf{K}_{c}	\mathbf{D}_{c}	A _c	R _{Repetition}	R _{MDS}	Coding Gain
4	10	3.4284	0.0024	0.0040	40.2%
6	22	3.4176	0.0037	0.0060	39%
8	29	3.4336	0.0050	0.0080	38%
10	35	3.4130	0.0061	0.0100	39%
12	40	3.4464	0.0074	0.0120	38%

Table: Coding Gain for Fixed Amount of Overlapping

Conclusion

- MDS-coded caching is rate optimal in general.
- Repetition caching can achieve optimality only for some special network topologies.
- **③** Code rate maximization problem for Repetition caching is NP-hard.
- Coding gain ranging from 35% to 50% and increases when the amount of overlapping between the clusters increases.

Future Work

- Design a clustering algorithm, taken into consideration the user distribution.
- Investigate the scenario where a user may not be able to connect to all SBSs within a cluster.

References

- X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, "5G ultra-dense cellular networks," *IEEE Wireless Communications*, vol. 23, no. 1, pp. 72–79, 2016.
- L. Gargano, A. A. Rescigno, and U. Vaccaro, "On k-strong conflict-free multicoloring," in *International Conference on Combinatorial Optimization and Applications*, pp. 276–290, Springer, 2017.
- G. Aloupis, J. Cardinal, S. Collette, S. Langerman, and S. Smorodinsky, "Coloring geometric range spaces," *Discrete & Computational Geometry*, vol. 41, no. 2, pp. 348–362, 2009.
- V. Bioglio, F. Gabry, and I. Land, "Optimizing MDS codes for caching at the edge," in *Global Communications Conference (GLOBECOM), 2015 IEEE*, pp. 1–6, IEEE, 2015.
- Z. Chen, J. Lee, T. Q. Quek, and M. Kountouris, "Cooperative caching and transmission design in cluster-centric small cell networks," *IEEE Transactions on Wireless Communications*, vol. 16, no. 5, pp. 3401–3415, 2017.

(日) (同) (三) (三)

Salwa Mostafa (City University)

< □ > < ---->