The Interplay between Index Coding, Caching, and Beamforming for Fog Radio Access Networks

¹Salwa Mostafa,¹Chi Wan Sung,²Terence H. Chan,³Guangping Xu

¹Department of Electrical Engineering, City University of Hong Kong, Hong Kong.
 ²Institute for Telecommunication Research, University of South Australia, Australia.
 ³School of Computer and Communication Engineering, Tianjin University of Technology, China

smostafa3-c@my.cityu.edu.hk

GLOBECOM 2020

Outline

Introduction

2 System Model

- 3 Cache Placement Schemes
- 4 Cache Delivery Schemes
- 5 Simulation Results

Motivation

- **Problem**: Fronthaul link being the bottleneck.
- **Solution**: Edge caching.

Figure 1: Fog-Radio Access Network (F-RAN) Architecture.^[1]

Our Objective

- Joint design the cache placement and delivery to minimize the fronthaul traffic.
- Consider two delivery schemes under random network connectivity.
 - Direct
 - Beamforming

Main Contribution

- Incorporate distributed beamforming.
- Investigate the interplay between index coding, caching, and beamforming.
- Beamforming can be exploited to reduce fronthaul traffic by more than 30%.

Consider a F-RAN consists of

- A cloud server, *M* cache-enabled F-APs, and *N* users.
- A library of *F* popular files, each of which has a size of *B* bits.
- Each F-AP has a cache space of C bits and a peak power constraint of P.
- F-AP *m* is connected to user *n* via a time-invariant Gaussian channel with amplitude gain h_{nm} .
- A target signal-to-noise ratio (SNR), γ , has to be met.
- If $|h_{nm}|^2 \ge \frac{\gamma}{P}$, the link is said to be *strong* and information can be successfully delivered.
- If $\frac{\gamma}{4P} \le |h_{nm}|^2 < \frac{\gamma}{P}$, the link is said to be *weak*.
- Beamforming to transmit identical bits to user n

$$(|h_{nm}|^2 + |h_{nm'}|^2 + 2|h_{nm}||h_{nm'}|)P \ge \gamma.$$

We consider three caching schemes

- Uncoded Caching (k = M): Each F-AP *m* stores the subfile $W_m^{(f)}$, for $m \in \mathcal{M}$.
- Repetition Caching $(k = \frac{M}{2})$: Each F-AP *m* stores the subfile $W_{(m \mod k)+1}^{(f)}$, for $m \in \mathcal{M}$.
- MDS-Coded Caching (k ≤ M): The k subfiles are encoded using an (M + k, k) MDS code to obtain M + k coded packets. The M are placed in the F-APs and the remaining k, denoted by Z, are stored only in the cloud.

Caching strategy *Most Popular First* (MPF).

Cache Delivery Schemes

- Transmission modes over the access channel
 - Direct.
 - Beamforming.
- The connectivity is represented by a ternary association matrix,

$$\boldsymbol{A}_{N \times M} \triangleq [a_{nm}] = \begin{cases} 0, & missing \\ 1, & weak \\ 2, & strong \end{cases}$$

- Fully Connected Networks :- if each user is associated, either weakly or strongly, to all F-APs.
- Partially Connected Networks :- if each user is associated, either weakly or strongly, to some F-APs.

Design Index Coding for Fully Connected Networks

- Repetition caching, each subfile of W^(f) is stored twice. Thus, no fronthaul traffic.
- **Uncoded caching**, each user needs the subfiles of $W^{(f)}$ cached on all F-APs.
 - If an F-AP connects to all users via strong links, its cached subfile can be obtained by all users.
 - If an F-AP connects to some users via weak links, its subfile needs to be sent over the fronthaul.

• Let $\mathcal{M}' \triangleq \{m \in \mathcal{M} \mid a_{nm} = 1 \text{ for some } n \in \mathcal{N}\}.$

- For any distinct i, j ∈ M', if W_i^(f) ⊕ W_j^(f) is transmitted, all users can obtain both W_i^(f) and W_j^(f) via two packet transmissions either over one strong link or beamforming on two weak links.
- The packets can be paired up arbitrarily to form XOR packets. If the number of those packets is odd, the unpaired one is sent uncoded.
- The minimum number of packets need to deliver $W^{(f)}$ to all users is $[|\mathcal{M}'|/2]$.

Design Index Coding for Fully Connected Networks

 MDS-coded caching, to determine which packets to deliver, binary linear programming (LP) can be used:

min
$$\sum_{m=1}^{M} x_m$$
 (1)
subject to $\boldsymbol{P} \boldsymbol{x} \geq \boldsymbol{r},$

where

$$\begin{aligned} \boldsymbol{P}_{N \times M} &\triangleq [P_{nm}] = \begin{cases} 1, & \text{missing or weak} \\ 0, & strong \end{cases} \\ \boldsymbol{x} &\triangleq [x_1, x_2, \dots, x_m] = \begin{cases} 1, & \text{send } W_m^{(f)} \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$

 $r = \max(k - s, 0)$ where $s \triangleq (s_1, s_2, \dots, s_N)$, user n has s_n strong links.

- After an optimal vector x is obtained, the corresponding packets are paired up for XOR transmissions.
- If the weight of x is odd, the last packet is transmitted without index coding.

City University of Hong Kong

Fronthaul Traffic Analysis

We analyze the expected fronthaul traffic for each caching scheme.

Theorem

Consider a fully connected networks with F = 2 and MC = 2B. The two files are requested by a user with probability p_1 and $p_2 \triangleq 1 - p_1$, where $p_1 \ge 0.5$ and each link is strong with probability q and weak with probability 1 - q.

■ For repetition caching, E[Λ] is given by

$$(1-p_1^N)B$$

For uncoded caching, E[Λ] is given by

$$\sum_{n=0}^{N} b_{N,P_1}(n) \sum_{j=0}^{M} \left[b_{M,1-q^n}(j) + b_{M,1-q^{N-n}}(j) \right] \left\lceil \frac{j}{2} \right\rceil \frac{B}{M}$$

where $b_{N,p}(i) \triangleq {N \choose i} p^i (1-p)^{N-i}$.

For MDS-coded caching with $k = \lceil Mq \rceil$, $E[\Lambda]$ is bounded below by

Moreover, the lower bound is asymptotically tight when M goes to infinity.

City University of Hong Kong

Design Index Coding for Partially Connected Networks

We first show that the problem with repetition caching can be reduced to that with uncoded caching.

■ **Repetition caching**, every pair of F-APs that cache the same subfile can be combined into one single F-AP, so the network can be transformed into one that has M/2 F-APs with a new $N \times M/2$ association matrix \mathbf{A}' , whose entries are defined by $a'_{n,m} = \min(a_{n,m} + a_{n,m+M/2}, 2)$, for all $n \in \mathcal{N}$ and $m \in \mathcal{M}$.

Example

Consider 4 F-APs and 2 users, a file
$$W^{(f)} = \begin{bmatrix} W_1^{(f)} & W_2^{(f)} & W_1^{(f)} & W_2^{(f)} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$
. Then, $\mathbf{A}' = \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix}$

It suffices to design algorithms for uncoded caching and MDS-coded caching only.

Optimal Index Coding for Uncoded Caching

- A pair of distinct subfiles, i and j, denoted by (i, j), is said to be a potential coded group, if the sum of each row of A[i, j] is greater than or equal to two.
- It has the property that if W_i ⊕ W_j is transmitted over the fronthaul, all users must have both W_i and W_j.

Example

Consider the file

$$W^{(f)} = \begin{bmatrix} W_1^{(f)} & W_2^{(f)} & W_3^{(f)} \end{bmatrix}$$

and the association matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

. $W_1^{(f)} \oplus W_3^{(f)}$ and $W_2^{(f)} \oplus W_3^{(f)}$ are potential coded groups while $W_1^{(f)} \oplus W_2^{(f)}$ is not.

Algorithm 1 Index Coding for Uncoded Caching in Partially Connected Networks Input : A set of F-APs \mathcal{M} , a set of users \mathcal{N} , an association matrix \boldsymbol{A} . Output: A set of packets \mathcal{I} .

- 1: Let $\mathcal{V} := \mathcal{M} \setminus \{ m \in \mathcal{M} \mid a_{nm} = 2 \ \forall n \in \mathcal{N} \};$
- 2: Construct a graph $G(\mathcal{V}, \mathcal{E})$, where $(i, j) \in \mathcal{E}$ if $(i, j) \in \mathcal{V}^2$ is a potential coded group;
- 3: Find a maximum matching \mathcal{I} for G;
- 4: Add all unmatched vertices in \mathcal{V} to \mathcal{I} ;

5: return \mathcal{I} ;

- The overall time complexity of Algorithm 1 is $O(NM^{2.5})$.
- Algorithm 1 is optimal.

Heuristic Index Coding for MDS-Coded Caching

Algorithm 2 Index Coding for MDS-Coded Caching in Partially Connected Networks

- Input : A set of F-APs \mathcal{M} , a set of users \mathcal{N} , an association matrix \boldsymbol{A} , a set of MDS coded packets \mathcal{Z} .
- **Output:** A set of packets \mathcal{I} .
- 1: Let r_n be the extra number of packets required by user n for $n \in \mathcal{N}$;
- 2: Let $\mathcal{V} := \mathcal{M} \setminus \{ m \in \mathcal{M} \mid a_{nm} = 2 \ \forall n \in \mathcal{N} \};$
- 3: Construct a graph $G(\mathcal{V}, \mathcal{E})$, where $(i, j) \in \mathcal{E}$ if $(i, j) \in \mathcal{V}^2$ is a potential coded group;
- 4: Find a maximum matching \mathcal{P} for G;
- 5: while $r_n > 0$ for some n do
- 6: **if** \mathcal{P} is non-empty **then**
- 7: Move an arbitrary element p from \mathcal{P} to \mathcal{I} ;
- 8: Update r_n for all n, assuming p is broadcast;
- 9: else

```
10: Move \max_n r_n elements from \mathcal{Z} to \mathcal{I};
```

```
11: Let r_n := 0 for all n;
```

- 12: end if
- 13: end while
- 14: return \mathcal{I} ;

• The overall time complexity of Algorithm 1 is $O(NM^{2.5})$.

- Single cell of radius *R* with a cloud server located at its center.
- The F-APs and the users are randomly distributed according to a homogeneous poisson point process.
- The F-APs are restricted to an inner concentric circle with radius *R*/2 while the users are distributed over the whole cell.

Parameters	Value
Cell radius (R)	500 m
Number of F-APs (<i>M</i>)	10 F-APs
Number of Users (N)	5 – 55 users
F-APs Peak Power (<i>P</i>)	2 W
Target SNR (γ)	6 – 14 dB
Path loss at distance d Km	140.7 + 36.7 log ₁₀ d, dB
Noise Power (σ^2) (10 MHz bandwidth)	−102 dBm
Number of Files (F)	10 files
Distribution Skewness (α)	1.5
File Size (B)	100 Mbits
Cache Size (C)	100 Mbits

Table 1: Parameters for Partially Connected Networks

• A user is said to be in outage if he is unable to obtain his requested file.

Figure 2: Outage probability for partially connected networks.

Fig. 2 shows that beamforming reduces outage probability significantly for high target SNR.

Fronthaul Traffic Load

Figure 3: Expected fronthaul traffic load with beamforming for fully connected networks where N = 5, M = 10, F = 2 and $p_1 = 0.8$.

Fronthaul Traffic Load

Figure 4: Normalized fronthaul traffic load for partially connected network where N = 15 and $\alpha = 1.5$.

Fronthaul Traffic Load

Figure 5: Normalized fronthaul traffic load for partially connected network where $\gamma=8$ dB and $\alpha=1.5.$

- Distributed beamforming is a promising physical-layer technique to increase cell coverage and boast received SNR.
- Distributed beamforming can lower the outage probability and the fronthaul traffic load of a F-RAN with cache-enabled F-APs.
- MDS-coded caching, in general, outperforms the uncoded and repetition caching schemes, except only in more extreme cases.

References

- Y.-J. Ku, D.-Y. Lin, C.-F. Lee, P.-J. Hsieh, H.-Y. Wei, C.-T. Chou, and A.-C. Pang, "5g radio access network design with the fog paradigm: Confluence of communications and computing," *IEEE Communications Magazine*, vol. 55, no. 4, pp. 46–52, 2017.
- M. A. Maddah-Ali and U. Niesen, "Fundamental limits of caching," *IEEE Transactions on Information Theory*, vol. 60, no. 5, pp. 2856–2867, 2014.
- K. Zhang and C. Tian, "Fundamental limits of coded caching: From uncoded prefetching to coded prefetching," *IEEE Journal on Selected Areas in Communications*, vol. 36, no. 6, pp. 1153–1164, 2018.
- X. Wu, Q. Li, V. C. Leung, and P. Ching, "Joint fronthaul multicast and cooperative beamforming for cache-enabled cloud-based small cell networks: An MDS codes-aided approach," *IEEE Transactions on Wireless Communications*, vol. 18, no. 10, pp. 4970–4982, 2019.

- R. Sun, Y. Wang, N. Cheng, L. Lyu, S. Zhang, H. Zhou, and X. Shen, "QoE-driven transmission-aware cache placement and cooperative beamforming design in cloud-RANs," *IEEE Transactions on Vehicular Technology*, vol. 69, no. 1, pp. 636–650, 2019.
- M.-M. Zhao, Y. Cai, M.-J. Zhao, B. Champagne, and T. A. Tsiftsis, "Improving caching efficiency in content-aware C-RAN-based cooperative beamforming: A joint design approach," *IEEE Transactions on Wireless Communications*, vol. 19, no. 6, pp. 4125–4140, 2020.
- M. Tao, E. Chen, H. Zhou, and W. Yu, "Content-centric sparse multicast beamforming for cache-enabled cloud RAN," *IEEE Transactions on Wireless Communications*, vol. 15, no. 9, pp. 6118–6131, 2016.

S. Mostafa, C. W. Sung, and G. Xu, "Code rate maximization of cooperative caching in ultra-dense networks," in *IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)*, pp. 1–6, 2019.