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Motivation

Problem: Fronthaul link being the bottleneck.

Solution: Edge caching.

Figure 1: Fog-Radio Access Network (F-RAN) Architecture.[1]
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Objective and Contribution

Our Objective

• Joint design the cache placement and delivery to minimize the fronthaul traffic.

• Consider two delivery schemes under random network connectivity.

Direct

Beamforming

Main Contribution

• Incorporate distributed beamforming.

• Investigate the interplay between index coding, caching, and beamforming.

• Beamforming can be exploited to reduce fronthaul traffic by more than 30%.
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System Model

Consider a F-RAN consists of

A cloud server, M cache-enabled F-APs, and N users.

A library of F popular files, each of which has a size of B bits.

Each F-AP has a cache space of C bits and a peak power constraint of P.

F-AP m is connected to user n via a time-invariant Gaussian channel with
amplitude gain hnm.

A target signal-to-noise ratio (SNR), γ, has to be met.

If |hnm|2 ≥ γ
P , the link is said to be strong and information can be

successfully delivered.

If γ
4P ≤ |hnm|

2 < γ
P , the link is said to be weak.

Beamforming to transmit identical bits to user n

(|hnm|2 + |hnm′ |2 + 2|hnm||hnm′ |)P ≥ γ.
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Cache Placement Schemes

We consider three caching schemes

Uncoded Caching (k = M): Each F-AP m stores the subfile W
(f )
m , for

m ∈M.

Repetition Caching (k = M
2 ): Each F-AP m stores the subfile W

(f )
(m mod k)+1,

for m ∈M.

MDS-Coded Caching (k ≤ M): The k subfiles are encoded using an
(M + k, k) MDS code to obtain M + k coded packets. The M are placed in
the F-APs and the remaining k , denoted by Z, are stored only in the cloud.

Caching strategy Most Popular First (MPF).
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Cache Delivery Schemes

Transmission modes over the access channel
• Direct.

• Beamforming.

The connectivity is represented by a ternary association matrix,

AN×M , [anm] =

0, missing
1, weak
2, strong

• Fully Connected Networks :- if each user is associated, either weakly or
strongly, to all F-APs.

• Partially Connected Networks :- if each user is associated, either weakly or
strongly, to some F-APs.
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Design Index Coding for Fully Connected Networks

Repetition caching, each subfile of W (f ) is stored twice. Thus, no fronthaul
traffic.

Uncoded caching, each user needs the subfiles of W (f ) cached on all F-APs.

• If an F-AP connects to all users via strong links, its cached subfile can be
obtained by all users.

• If an F-AP connects to some users via weak links, its subfile needs to be sent
over the fronthaul.

Let M′ , {m ∈M | anm = 1 for some n ∈ N}.

For any distinct i , j ∈M′, if W
(f )
i ⊕W

(f )
j is transmitted, all users can obtain

both W
(f )
i and W

(f )
j via two packet transmissions either over one strong link or

beamforming on two weak links.

The packets can be paired up arbitrarily to form XOR packets. If the number of
those packets is odd, the unpaired one is sent uncoded.

• The minimum number of packets need to deliver W (f ) to all users is d|M′|/2e.
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Design Index Coding for Fully Connected Networks

MDS-coded caching, to determine which packets to deliver, binary linear
programming (LP) can be used:

min
M∑

m=1

xm

subject to Px ≥ r ,

(1)

where

PN×M , [Pnm] =

{
1, missing or weak
0, strong

x , [x1, x2, . . . , xm] =

{
1, send W

(f )
m

0, otherwise

r = max(k − s, 0) where s , (s1, s2, . . . , sN), user n has sn strong links.
• After an optimal vector x is obtained, the corresponding packets are paired up

for XOR transmissions.
• If the weight of x is odd, the last packet is transmitted without index coding.
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Fronthaul Traffic Analysis

We analyze the expected fronthaul traffic for each caching scheme.

Theorem
Consider a fully connected networks with F = 2 and MC = 2B. The two files are requested by a user with

probability p1 and p2 , 1− p1, where p1 ≥ 0.5 and each link is strong with probability q and weak with
probability 1− q.

For repetition caching, E [Λ] is given by

(1− pN
1 )B.

For uncoded caching, E [Λ] is given by

N∑
n=0

bN,p1
(n)

M∑
j=0

[
bM,1−qn (j) + b

M,1−qN−n (j)
] ⌈ j

2

⌉
B

M
,

where bN,p(i) ,
(N
i

)
pi (1− p)N−i .

For MDS-coded caching with k = dMqe, E [Λ] is bounded below by

(1− pN
1 )

(
1−
dMqe
M

)
2B, for q ≥ 0.5.

Moreover, the lower bound is asymptotically tight when M goes to infinity.
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Design Index Coding for Partially Connected Networks

We first show that the problem with repetition caching can be reduced to that
with uncoded caching.

Repetition caching, every pair of F-APs that cache the same subfile can be
combined into one single F-AP, so the network can be transformed into one
that has M/2 F-APs with a new N ×M/2 association matrix A′, whose
entries are defined by a′n,m = min(an,m + an,m+M/2, 2), for all n ∈ N and
m ∈M.

Example

Consider 4 F-APs and 2 users, a file W (f ) =
[
W

(f )
1 W

(f )
2 W

(f )
1 W

(f )
2

]
A =

[
0 1 2 1
1 1 2 0

]
. Then, A′ =

[
2 2
2 1

]

It suffices to design algorithms for uncoded caching and MDS-coded caching
only.
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Optimal Index Coding for Uncoded Caching

A pair of distinct subfiles, i and j , denoted by (i , j), is said to be a potential
coded group, if the sum of each row of A[i , j ] is greater than or equal to two.

It has the property that if Wi ⊕Wj is transmitted over the fronthaul, all users
must have both Wi and Wj .

Example

Consider the file
W (f ) =

[
W

(f )
1 W

(f )
2 W

(f )
3

]
and the association matrix

A =

0 1 2
1 1 1
1 1 1


.
W

(f )
1 ⊕W

(f )
3 and W

(f )
2 ⊕W

(f )
3 are potential coded groups while W

(f )
1 ⊕W

(f )
2 is

not.
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Optimal Index Coding for Uncoded Caching

Algorithm 1 Index Coding for Uncoded Caching in Partially Connected Networks

Input : A set of F-APs M, a set of users N , an association matrix A.
Output: A set of packets I.

1: Let V :=M\ {m ∈M | anm = 2 ∀n ∈ N};
2: Construct a graph G (V, E), where (i , j) ∈ E if (i , j) ∈ V2 is a potential coded

group;
3: Find a maximum matching I for G ;
4: Add all unmatched vertices in V to I;
5: return I;

The overall time complexity of Algorithm 1 is O(NM2.5).

Algorithm 1 is optimal.
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Heuristic Index Coding for MDS-Coded Caching

Algorithm 2 Index Coding for MDS-Coded Caching in Partially Connected Net-
works
Input : A set of F-APs M, a set of users N , an association matrix A, a set of MDS coded

packets Z.
Output: A set of packets I.
1: Let rn be the extra number of packets required by user n for n ∈ N ;
2: Let V :=M\ {m ∈M | anm = 2 ∀n ∈ N};
3: Construct a graph G(V, E), where (i , j) ∈ E if (i , j) ∈ V2 is a potential coded group;
4: Find a maximum matching P for G ;
5: while rn > 0 for some n do
6: if P is non-empty then
7: Move an arbitrary element p from P to I;
8: Update rn for all n, assuming p is broadcast;
9: else

10: Move maxn rn elements from Z to I;
11: Let rn := 0 for all n;
12: end if
13: end while
14: return I;

The overall time complexity of Algorithm 1 is O(NM2.5).
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Simulation Parameters

Single cell of radius R with a cloud server located at its center.

The F-APs and the users are randomly distributed according to a
homogeneous poisson point process.

The F-APs are restricted to an inner concentric circle with radius R/2 while
the users are distributed over the whole cell.

Table 1: Parameters for Partially Connected Networks

Parameters Value
Cell radius (R) 500 m

Number of F-APs (M) 10 F-APs
Number of Users (N) 5− 55 users

F-APs Peak Power (P) 2 W
Target SNR (γ) 6− 14 dB

Path loss at distance d Km 140.7 + 36.7 log10 d, dB

Noise Power (σ2) (10 MHz bandwidth) −102 dBm
Number of Files (F ) 10 files

Distribution Skewness (α) 1.5
File Size (B) 100 Mbits

Cache Size (C) 100 Mbits
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Outage Probability

A user is said to be in outage if he is unable to obtain his requested file.
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Figure 2: Outage probability for partially connected networks.

Fig. 2 shows that beamforming reduces outage probability significantly for high
target SNR.
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Fronthaul Traffic Load
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Figure 3: Expected fronthaul traffic load with beamforming for fully connected networks
where N = 5, M = 10, F = 2 and p1 = 0.8.
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Fronthaul Traffic Load
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Figure 4: Normalized fronthaul traffic load for partially connected network where N = 15
and α = 1.5.
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Fronthaul Traffic Load
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Figure 5: Normalized fronthaul traffic load for partially connected network where
γ = 8 dB and α = 1.5.
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Conclusion

Distributed beamforming is a promising physical-layer technique to increase
cell coverage and boast received SNR.

Distributed beamforming can lower the outage probability and the fronthaul
traffic load of a F-RAN with cache-enabled F-APs.

MDS-coded caching, in general, outperforms the uncoded and repetition
caching schemes, except only in more extreme cases.
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